
Makie
A data visualization ecosystem for Julia

Marie-Helene Burle
Wednesday, October 26

Introduction

Plotting in Julia

Many options:

: high-level API for working with different back-ends (GR, Pyplot, Plotly…)

: Julia interface to Matplotlib’s matplotlib.pyplot

: Julia interface to plotly.js

: the fastest plotting option in Julia by far, but limited features

: following the grammar of graphics popularized by Hadley Wickham in R

: grammar of interactive graphics

: Julia interface to the PGFPlots LaTeX package

: plots in the terminal 🙂

Plots.jl

PyPlot.jl

PlotlyJS.jl

PlotlyLight.jl

Gad�y.jl

VegaLite.jl

PGFPlotsX.jl

UnicodePlots.jl

: powerful plotting ecosystem: animation, 3D, GPU optimizationMakie.jl

https://github.com/JuliaPlots/Plots.jl
https://github.com/JuliaPy/PyPlot.jl
https://github.com/JuliaPlots/PlotlyJS.jl
https://github.com/JuliaComputing/PlotlyLight.jl
https://github.com/GiovineItalia/Gadfly.jl
https://github.com/queryverse/VegaLite.jl
https://github.com/KristofferC/PGFPlotsX.jl
https://github.com/JuliaPlots/UnicodePlots.jl
https://github.com/MakieOrg/Makie.jl

Makie ecosystem

Main package:

Makie: plots functionalities. Backend needed to render plots into images or vector
graphics

Backends:

CairoMakie: vector graphics or high-quality 2D plots. Creates, but does not display
plots (you need an IDE that does or you can use)

GLMakie: based on ; 3D rendering and interactivity in window (no
vector graphics)

WGLMakie: web version of GLMakie (plots rendered in a browser instead of a
window)

ElectronDisplay.jl

OpenGL GLFW

https://github.com/queryverse/ElectronDisplay.jl
https://en.wikipedia.org/wiki/OpenGL
https://www.glfw.org/

Extensions

 add geographical plotting utilities to Makie

 turns plotting into a simple algebra of building
blocks

 to create network graphs

GeoMakie.jl

AlgebraOfGraphics.jl

GraphMakie.jl

https://github.com/MakieOrg/GeoMakie.jl
https://github.com/MakieOrg/AlgebraOfGraphics.jl/
https://github.com/MakieOrg/GraphMakie.jl

Cheatsheet 2D

From: Storopoli, Huijzer and Alonso (2021). Julia Data Science. https://juliadatascience.io. ISBN: 97984898

https://juliadatascience.io/datavisMakie_attributes

Cheatsheet 3D

From: Storopoli, Huijzer and Alonso (2021). Julia Data Science. https://juliadatascience.io. ISBN: 97984898

https://juliadatascience.io/datavisMakie_attributes

Resources

Many examples in the project

Of�cial documentation

Julia Data Science book, chapter 5

Beautiful Makie

https://docs.makie.org/stable/
https://juliadatascience.io/DataVisualizationMakie
https://github.com/MakieOrg/BeautifulMakie

Troubleshooting

Installing GLMakie can be challenging. may lead you towards
solutions

CairoMakie and WGLMakie should install without issues

This page

https://github.com/MakieOrg/Makie.jl/tree/master/GLMakie#troubleshooting-opengl

Fundamental functioning

Figure
Load the package
Here, we are using CairoMakie

Create a Figure (container object)

using CairoMakie # no need to import Makie itself

fig = Figure() typeof(fig)

Figure

You can customize a Figure:

Makie uses the package as a dependency
You can �nd a list of all named colours

fig2 = Figure(backgroundcolor=:grey22, resolution=(300, 300))

Colors.jl
here

https://github.com/JuliaGraphics/Colors.jl
https://juliagraphics.github.io/Colors.jl/stable/namedcolors/

To use CSS speci�cation (e.g. hex), you need to install Colors explicitly and
use its color parsing capabilities
using Colors
fig3 = Figure(backgroundcolor=colorant"#adc2eb")

http://juliagraphics.github.io/Colors.jl/stable/constructionandconversion/#Color-Parsing

Axis

Then, you can create an Axis

ax = Axis(Figure()[1, 1])

Axis with 1 plots:
 ┗━ Mesh{Tuple{GeometryBasics.Mesh{3,
Float32, GeometryBasics.TriangleP{3,
Float32, GeometryBasics.PointMeta{3,
Float32, Point{3, Float32},
(:normals,), Tuple{Vec{3, Float32}}}},
GeometryBasics.FaceView{GeometryBasics.T
 Float32, GeometryBasics.PointMeta{3,
Float32, Point{3, Float32},
(:normals,), Tuple{Vec{3, Float32}}}},
GeometryBasics.PointMeta{3, Float32,
Point{3, Float32}, (:normals,),
Tuple{Vec{3, Float32}}},
GeometryBasics.NgonFace{3,
GeometryBasics.OffsetInteger{-1,
UInt32}},
St tA St tV t {G t B i

typeof(ax)

Axis

Axis(fig3[1, 1]) # fig3[1, 1] sets the subplot layout: fig[row, col]
fig3

Axis(fig[2, 3]) # This is what happens if we change the layout
fig

Axis(fig3[2, 3]) # We can add another axis on fig3
fig3

Axis are customizable
fig4 = Figure()
Axis(fig4[1, 1],
 xlabel="x label",
 ylabel="y label",
 title="Title of the plot")
fig4

Plot
Finally, we can add a plot

fig = Figure()1
ax = Axis(fig[1, 1])2
x = LinRange(-10, 10, 20)3
y = x4
scatter!(ax, x, y) # Functions with ! transform their arguments5
fig6

Of course, there are many plotting functions, e.g. scatterlines!
fig = Figure()
ax = Axis(fig[1, 1])
x = LinRange(-10, 10, 20)
y = x
scatterlines!(ax, x, y) # Functions with ! transform their arguments
fig

We can also use lines!
fig = Figure()
ax = Axis(fig[1, 1])
x = LinRange(-10, 10, 20)
y = sin.(x) # The . means that the function is broadcast to each element of x
lines!(ax, x, y)
fig

Let’s add points to get a smoother line
fig = Figure()
ax = Axis(fig[1, 1])
x = LinRange(-10, 10, 1000)
y = sin.(x) # The . means that the function is broadcast to each element of x
lines!(ax, x, y)
fig

Now, you don’t have to create the Figure, Axis, and plot one at a time
You can create them at the same time with, for instance lines

x = LinRange(-10, 10, 1000)
y = sin.(x)
lines(x, y) # Note the use of lines instead of lines!

Or even more simply
x = LinRange(-10, 10, 1000)
lines(x, sin)

This is a lot simpler, but it is important to understand the concepts of the
Figure and Axis objects as you will need it to customize them

x = LinRange(-10, 10, 1000)
y = cos.(x)
lines(x, y;
 figure=(; backgroundcolor=:green),
 axis=(; title="Cosinus function", xlabel="x label", ylabel="y label"))

When you create the Figure, Axis, and plot at the same time, you create
a FigureAxisPlot object

x = LinRange(-10, 10, 1000)
y = cos.(x)
obj = lines(x, y;
 figure=(; backgroundcolor=:green), # We use ; here because these are o
 axis=(; title="Cosinus function",
 xlabel="x label",
 ylabel="y label"));
typeof(obj)

Makie.FigureAxisPlot

The mutating functions (with !) can be used to add plots to an existing
�gure, but �rst, you need to decompose the FigureAxisPlot object
fig, ax, plot = lines(x, sin)
lines!(ax, x, cos) # Remember that we are transforming the Axis object
fig # Now we can plot the transformed Figure

Or we can add several plots on different Axis in the same Figure
fig, ax1, plot = lines(x, sin)
ax2 = Axis(fig[1, 2])
lines!(ax2, x, cos)
fig

Examples

2D
using CairoMakie
using StatsBase, LinearAlgebra
using Interpolations, OnlineStats
using Distributions
CairoMakie.activate!(type = "png")

function eq_hist(matrix; nbins = 256 * 256)
 h_eq = fit(Histogram, vec(matrix), nbins = nbins)
 h_eq = normalize(h_eq, mode = :density)
 cdf = cumsum(h_eq.weights)
 cdf = cdf / cdf[end]
 edg = h_eq.edges[1]
 interp_linear = LinearInterpolation(edg, [cdf..., cdf[end]])
 out = reshape(interp_linear(vec(matrix)), size(matrix))
 return out
end

function getcounts!(h, fn; n = 100)
 for _ in 1:n

vals = eigvals(fn())

2D

3D
using GLMakie, Random
GLMakie.activate!()

Random.seed!(13)
x = -6:0.5:6
y = -6:0.5:6
z = 6exp.(-(x.^2 .+ y' .^ 2)./4)

box = Rect3(Point3f(-0.5), Vec3f(1))
n = 100
g(x) = x^(1/10)
alphas = [g(x) for x in range(0,1,length=n)]
cmap_alpha = resample_cmap(:linear_worb_100_25_c53_n256, n, alpha = alphas)

with_theme(theme_dark()) do
 fig, ax, = meshscatter(x, y, z;
 marker=box,
 markersize = 0.5,
 color = vec(z),

colormap = cmap alpha,

3D

For more examples, have a look at Beautiful Makie

https://github.com/MakieOrg/BeautifulMakie

Compiling sysimages

While Makie is extremely powerful, its compilation time and its time to
�rst plot are extremely long

For this reason, it might save you a lot of time to create a sysimage (a �le
containing information from a Julia session such as loaded packages, global
variables, compiled code, etc.) with PackageCompiler.jl

https://github.com/JuliaLang/PackageCompiler.jl

Using the Alliance clusters

CairoMakie

CairoMakie will run without problem on the Alliance clusters

It is not designed for interactivity, so saving to �le is what makes the most
sense

Example

Remember however that CairoMakie is 2D only (for now)

save("graph.png", fig)

GLMakie

GLMakie relies on to create windows with OpenGL

GLFW doesn’t support creating contexts without an associated window

The dependency will thus not install in the clusters—even with
X11 forwarding—unless you use , , or

GLFW

GLFW.jl
VDI nodes VNC Virtual GL

https://www.glfw.org/
https://github.com/JuliaGL/GLFW.jl
https://docs.alliancecan.ca/wiki/VNC#VDI_Nodes
https://docs.alliancecan.ca/wiki/VNC
https://virtualgl.org/

WGLMakie

You can setup a server with as per

However, this method is intended at creating interactive widget, e.g. for a
website

While this is really cool, it isn’t optimized for performance

There might also be a way to create an SSH tunnel to your local browser,
although there is no documentation on this

Best probably is to save to �le

JSServe.jl the documentation

https://github.com/SimonDanisch/JSServe.jl
http://juliaplots.org/WGLMakie.jl/stable/

Conclusion about the Makie ecosystem on
production clusters

2D plots: use CairoMakie and save to �le

3D plots: use WGLMakie and save to �le

Questions?

